Neural Implementation of Bayesian Inference in Population Codes
نویسندگان
چکیده
This study investigates a population decoding paradigm, in which the estimation of stimulus in the previous step is used as prior knowledge for consecutive decoding. We analyze the decoding accuracy of such a Bayesian decoder (Maximum a Posteriori Estimate), and show that it can be implemented by a biologically plausible recurrent network, where the prior knowledge of stimulus is conveyed by the change in recurrent interactions as a result of Hebbian learning.
منابع مشابه
A neural implementation of Bayesian inference based on predictive coding
Predictive coding is a leading theory of cortical function that has previously been shown to explain a great deal of neurophysiological and psychophysical data. Here it is shown that predictive coding can perform almost exact Bayesian inference when applied to computing with population codes. It is demonstrated that the proposed algorithm, based on predictive coding, can: decode probability dis...
متن کاملImplementation of Traditional (S-R)-Based PM Method with Bayesian Inference
In order to perform Preventive Maintenance (PM), two approaches have evolved in the literature. The traditional approach is based on the use of statistical and reliability analysis of equipment failure. Under statistical-reliability (S-R)-based PM, the objective of achieving the minimum total cost is pursued by establishing fixed PM intervals, which are statistically optimal, at which to replac...
متن کاملBayesian approach to inference of population structure
Methods of inferring the population structure, its applications in identifying disease models as well as foresighting the physical and mental situation of human beings have been finding ever-increasing importance. In this article, first, motivation and significance of studying the problem of population structure is explained. In the next section, the applications of inference of p...
متن کاملBayesianModels of Brain and Behaviour
This paper presents a review of Bayesian models of brain and behaviour. We first review the basic principles of Bayesian inference. This is followed by descriptions of sampling and variational methods for approximate inference, and forward and backward recursions in time for inference in dynamical models. The review of behavioural models covers work in visual processing, sensory integration, se...
متن کاملA Bayesian nonparametric approach for uncovering rat hippocampal population codes during spatial navigation.
BACKGROUND Rodent hippocampal population codes represent important spatial information about the environment during navigation. Computational methods have been developed to uncover the neural representation of spatial topology embedded in rodent hippocampal ensemble spike activity. NEW METHOD We extend our previous work and propose a novel Bayesian nonparametric approach to infer rat hippocam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001